BÉLA BARTÓK'S AXIS SYSTEM

INTRODUCTION

\square Béla Bartók's axis system was first published by Ernö Lendvai, one of his disciples, after performing an exhaustive analysis of his work.
\square In short, it says that, if we are in the C Major key, the chords having the Tonic harmonic function are the following:

- C and Cm
- Their relative chords: Am and Eb , and also A and Ebm
- The relatives of these last chords: $\mathrm{F} \# \mathrm{~m}$ and Gb (or $\mathrm{F} \#$)

TONIC AXES IN C MAJOR

\square We can represent these 8 chords in a cycle of fifths:

© 2009 www.harmonicwheel.com

THE OTHER AXES IN C MAJOR

\square The same reasoning can be applied to the chords with Dominant function, which will be:

- G and Gm
- Their relative chords: $E m$ and $B b$, and also E and $B b m$
- The relatives of these last chords: $\mathrm{C} \# \mathrm{~m}$ and Db (or $\mathrm{C} \#$)
- Similarly, the chords with Subdominant function will be:
- F and Fm
- Their relative chords: Dm and $A b$, and also D and $A b m$
- The relatives of these last chords: Bm and Cb (or B)

DOMINANT AXES IN C MAJOR

\square The 8 Dominant chords in a cycle of fifths:

© 2009 www.harmonicwheel.com

SUBDOMINANT AXES IN C MAJOR

\square The 8 Subdominant chords in a cycle of fifths:

© 2009 www.harmonicwheel.com

HARMONIC FUNCTIONS

\square Therefore, in each key we can clasify the 24 Major and minor chords into 3 groups of 8 chords:

- 8 chords with Tonic function (Group T)
- 8 chords with Dominant function (Group D)
- 8 chords with Subdominant function (Group S)
\square Thus, we have a sequence of S - T - D functions that repeats itself in a cyclic way, as can be seen in the next figure.

HARMONIC FUNCTIONS

\square Harmonic functions in C Mayor:

© 2009 www.harmonicwheel.com

HARMONIC FUNCTIONS

\square On this representation, the 8 chords making up a group are placed 90° apart, that is, they are separated as much as possible.
\square However, since they have the same harmonic function, there should exist an alternative representation where these chords appear grouped, that is, next to each other.
\square Precisely, this is what occurs on the Harmonic Wheel, where each of these groups takes up a circular sector, as can be seen:

HARMONIC FUNCTIONS

HARMONIC FUNCTIONS

\square Finally, let us observe that group D is to the right of group T, as well as group T is to the right of group S. This means that group T acts as the Dominant of group S.
\square But group S is to the right of group D (see next figure), so group S acts as the Dominant of group D, thus completing the Dominant relationships:

[^0]
HARMONIC FUNCTIONS

T

[^0]: © 2009 www.harmonicwheel.com

